Evidence of and factors affecting competition between wild and hatchery anadromous salmonids in fresh water

Chris Tatara Barry Berejikian

NOAA, Northwest Fisheries Science Center, Manchester Research Station

Overview

- What is competition and how do we measure it?
- Factors affecting competition
- Evidence of competition
 - Relative competitive ability
- Research needs and approaches
- Summary

Measures of competition

- Competition occurs when multiple organisms exploit a common limited resource
 - Reduced quantity and quality of freshwater habitat
 - Increased production of hatchery fish

Factors affecting competition

Population Factors

Individual Factors

Interspecific competition

0.2

5/19

- Assemblages of salmonid species occupy different ecological niches
 - Spatial partitioning
 - Coho, steelhead, and cutthroat use habitat differently according to channel hydraulics and body shape (Bisson et al. 1988)
 - **Temporal**
 - Life history differences (e.g., spawning time of salmon and steelhead)

6/8

6/28

Date

7/18

Riley et al. 2003 NAJFM

8/7

Chinook

coho

7/26

Intraspecific competition

Tatara et al. TAFS 2009

 Habitat preferences and ecological niches of hatchery salmonids are similar to their wild conspecifics

Potential for competition

Duration of freshwater cohabitation

Body size

- Relative body size
- Size differences of 5% are sufficient to ensure dominance
 - Dependent on group size
- Important role in interspecific competition and niche partitioning
- Hatchery fish > wild fish

Advantage of body size

Prior residence

- Juvenile salmonids with established territories have a competitive advantage over challengers or intruders
 - wild or hatchery
 - demonstrated for intraspecific competition (possible for interspecific)
- Prior residence benefits wild fish because stocking practices most often make hatchery fish the intruders
 - can be overcome by size differences or rearing environment (coho salmon)

Rearing environment

- Hatchery rearing of salmonids can change behavior and competitive ability
- Two mechanisms
 - Genetic (selection)
 - Deliberate or unintentional
 - Environmental
- Differences are not consistent among species or hatchery populations within species
 - Reviews:
 - Weber & Fausch 2003
 - Einum & Fleming 2001

Advantage of rearing environment

Factor: Fish density

Intraspecific

Interspecific

Measuring hatchery fish competitive ability

Adapted from Weber & Fausch 2003 CJFAS

- Additive design
 - Density different among treatments measures <u>effect</u> of competition
- Substitutive design
 - Density constant among treatments measures <u>relative competitive</u> <u>ability</u>
- Same design used to study interspecific competition

Interpreting substitutive results

Substitutive studies of competition

Species	Metric	Result	RCA	Reference
Steelhead	Aggression (n=6) Feeding (n=6)	W > H	0.54	Riley et al. 2005
		W < H	1.39	
Steelhead	Aggression (n=4) Feeding (n=4)	W < H	1.39	Riley et al. 2009
		W < H	1.13	
Chinook salmon	Aggression (n=4) Growth (n=6)	W < H	4.9	Peery and Bjornn 1996
		WW > WH	1.8	
Chinook salmon	Growth Survival (n=2)	WW = WH	1.1	Weber and Fausch 2005
		WW = WH	0.95	
White-spotted charr	Growth A Growth B	WW < WH	0.85	Yamamoto et al. 2009
		WW = WH	0.99	
Brown trout	Growth	W > H	0.8	Sundstrom et al. 2004
Brown trout	Growth	WW > WH	2.6	Vehanen et al. 2009
Brown trout	Growth	WW = WH	1.05	Bohlin et al. 2002

Research needs & approaches

- More substitutive experiments
 - Better understand relative competitive ability
 - Intraspecific (n = 8 studies)
 - No studies for coho or sockeye salmon
 - Interspecific (n = 0 studies)
- Study juvenile competition at a larger scale & for longer durations
 - Problems with substitutive experiments
 - Field scale experiments
 - Establish replicated treatment and control reaches or tributaries
 - Monitor supplemented and non-target species before and after supplementation
 - Intra- and interspecific competition
 - Make comparisons using BACI design
 - Pearsons and Temple 2007 NAJFM, 2010 TAFS

Summary

- Hatchery fish are more likely to compete with wild fish of the same species – niche overlap
- Competition increases with duration of freshwater residence, fry & parr releases, and high residualism rates
- Size asymmetries typically favor hatchery fish
- Prior residence favors wild fish
- Hatchery environmental effects appear equivocal
- Competition is density dependent in relation to habitat carrying capacity
- Current body of substitutive experiments suggest RCA of hatchery and wild fish is about equal for growth metrics